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Abstract
Unraveling genetic population structure is challenging in species potentially char‐
acterized by large population size and high dispersal rates, often resulting in weak 
genetic differentiation. Genotyping a large number of samples can improve the detec‐
tion of subtle genetic structure, but this may substantially increase sequencing cost 
and downstream bioinformatics computational time. To overcome this challenge, al‐
ternative, cost‐effective sequencing approaches, namely Pool‐seq and Rapture, have 
been developed. We empirically measured the power of resolution and congruence 
of these two methods in documenting weak population structure in nonmodel spe‐
cies with high gene flow comparatively to a conventional genotyping‐by‐sequenc‐
ing (GBS) approach. For this, we used the American lobster (Homarus americanus) 
as a case study. First, we found that GBS, Rapture, and Pool‐seq approaches gave 
similar allele frequency estimates (i.e., correlation coefficient over 0.90) and all three 
revealed the same weak pattern of population structure. Yet, Pool‐seq data showed 
FST estimates three to five times higher than GBS and Rapture, while the latter two 
methods returned similar FST estimates, indicating that individual‐based approaches 
provided more congruent results than Pool‐seq. We conclude that despite higher 
costs, GBS and Rapture are more convenient approaches to use in the case of spe‐
cies exhibiting very weak differentiation. While both GBS and Rapture approaches 
provided similar results with regard to estimates of population genetic parameters, 
GBS remains more cost‐effective in project involving a relatively small numbers of 
genotyped individuals (e.g., <1,000). Overall, this study illustrates the complexity of 
estimating genetic differentiation and other summary statistics in complex biological 
systems characterized by large population size and migration rates.
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1  | INTRODUC TION

Over the last decade, next‐generation sequencing (NGS) technolo‐
gies have enhanced the development of population genomic studies 
in nonmodel organisms (Armengaud et al., 2014; Ekblom & Galindo, 
2011; Ellegren, 2014; Narum, Buerkle, & Davey, 2013). The advent 
of NGS technology led to the occurrence of new molecular meth‐
ods for population genomics analysis such as restriction site‐asso‐
ciated DNA Sequencing (RAD‐seq) or genotyping‐by‐sequencing 
(GBS); these methods have substantially increased the amount of 
genomic information available with thousands of single nucleotide 
polymorphisms (SNPs) being genotyped (Andrews, Good, & Miller, 
2016). Using large genomic SNP datasets, both methods have shown 
significant improvement in our capacity to resolve fine‐scale pop‐
ulation structure compared to microsatellites markers (Ferchaud, 
Laporte, Perrier, & Bernatchez, 2018; Malenfant, Coltman, & Davis, 
2015; Vendrami et al., 2017). Moreover, these methods have en‐
hanced the accuracy of demographic inference (Le Moan, Gagnaire, 
& Bonhomme, 2016; Rougemont et al., 2017; Shafer, Gattepaille, 
Stewart, & Wolf, 2015).

Uncovering population genomic structure of species charac‐
terized by large effective population size and/or high migration 
rate may be challenging since this often translates into a lack or 
very weak genetic differentiation and spatial genomic structure 
(Gagnaire et al., 2015; Holliday et al., 2017; Neale & Kremer, 2011; 
Waples, 1998). Recent studies suggested that increasing the num‐
ber of samples and markers genotyped can improve the detection 
of subtle genetic structure in nonmodel species such as the polar 
bear (Viengkone et al., 2016), the candlefish (Candy et al., 2015), 
the American lobster (Benestan et al., 2015), the silvery lightfish 
(Rodriguez‐Ezpeleta, Álvarez, & Irigoien, 2017), the Tasmanian devil 
(Hendricks et al., 2017), or the sea cucumber (Xuereb et al., 2018). 
Yet, the genotyping of a large number of samples and markers may 
vary widely depending on the selected NGS protocol. Therefore, 
choosing the most appropriate NGS genotyping approach some‐
times remains challenging. Roughly speaking, the lower the extent 
of genetic differentiation is, the higher the number of required 
samples and markers is to obtain narrow confidence intervals (CI) 
around estimates of genetic differentiation (Patterson, Price, & 
Reich, 2006). This may substantially increase the analytical cost and 
computational time (Shendure & Aiden, 2012). To overcome this 
challenge, alternative protocols to the classic way of sequencing in‐
dividuals separately (i.e., each individual is sequenced with a unique 
barcode) have been developed either by pooling DNA samples such 
as Pool sequencing (Futschik & Schlötterer, 2010; Lynch, Bost, & 
Wilson, 2014; Schlötterer, Tobler, Kofler, & Nolte, 2014) or by re‐
ducing genomic complexity using sequence capture methods (Ali et 
al., 2016; Boucher, Casazza, Szövényi, & Conti, 2016; Hoffberg et al., 
2016; Jones & Good., 2016).

Despite these promising alternatives, each approach has its 
own strengths and weaknesses, related to the distribution of 
polymorphic loci, the cost of library preparation and sequenc‐
ing, and the accuracy of variant calling and genotyping. All of 

these factors may ultimately affect demographic inferences 
(Cutler & Jensen, 2010; Harvey, Smith, & Glenn, 2016). For in‐
stance, Pool sequencing (hereafter Pool‐seq) does not provide 
individual genotypes, whereas this information is essential for 
some applications such as assignment tests and linkage disequi‐
librium estimation (Cutler & Jensen, 2010). On the other hand, 
and pending on specific research objectives, quantifying genetic 
parameters where individual information is required may not al‐
ways be necessary. In such cases, Pool‐seq has already proven 
to be an effective and accurate approach to investigate genome‐
wide variations of terrestrial and marine high gene flow species 
such as oaks (Quercus spp., Leroy et al., 2018), poplar (Populus 
alba, Stölting et al., 2015; Populus alba, Populus tremula, Christe 
et al., 2016), Chinese chestnut (Castanea mollissima, LaBonte, 
Zhao, & Woeste, 2018), sticklebacks (Gasterosteus aculeatus, Guo, 
DeFaveri, & Sotelo, 2015), Atlantic herring (Clupea harengus, Guo, 
Li, & Merilä, 2016; Lamichhaney et al., 2012; Martinez Barrio et 
al., 2016), Atlantic cod (Gadus morhua, Karlsen et al., 2013), and 
the copepod (Tigriopus californicus, Lima & Willett, 2018). This lat‐
ter approach was also successful to detect selection in the model 
species Drosophila spp. characterized by very large effective pop‐
ulation size (e.g., Barghi et al., 2018; Bastide et al., 2013; Kapun 
et al., 2014). Furthermore, Pool‐seq offers the possibility to gen‐
otype a large number of individuals at a much lower cost than 
individual sequencing.

In contrast to Pool‐seq, sequence capture approaches enable 
the sequencing of a large number of samples while preserving 
genotypic information at the individual level (Andrews et al., 
2016). Originally, this latter method targets known genomic re‐
gions such as exons, which limits the number and diversity of 
DNA sequences being studied (Harvey et al., 2016). For the past 
few years, sequence capture approaches have undergone a new 
upswing, in particular with the concept of targeted sequence en‐
richment that couples the power of sequence capture with NGS 
technology (Grover, Salmon, & Wendel, 2012). More recently, 
methods combining sequence capture enrichment and reduced 
representation libraries have been proposed (Ali et al., 2016; 
Boucher et al., 2016; Hoffberg et al., 2016; Suchan et al., 2016). 
In this study, due to its ease of use with GBS libraries, we focused 
our work on the so‐called Rapture protocol, which represents a 
highly flexible genotyping method protocol allowing thousands 
of individuals to be sequenced simultaneously with a high se‐
quencing depth (Ali et al., 2016). However, this method requires 
known genomic sequences of interest (e.g., reference genome or 
targeted sequence information) in order to design capture probes 
(Ali et al., 2016; Jones & Good, 2016). The design of capture 
probes is a critical step since it may influence the quality of all the 
genomic data collected. Furthermore, this step can be potentially 
costly in terms of probes development and synthesis. Although 
targeted loci should be selected according to the experimental 
needs of a given project, this selection step may be hampered by 
the occurrence of paralogous or highly polymorphic sequences 
(Ali et al., 2016).
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In sum, each of these NGS protocols (GBS, Pool‐seq, and Rapture) 
offers different benefits and limitations and all may be relevant to the 
field of population genomics in species exhibiting low genetic differen‐
tiation. To date, there is no study that have already explored and com‐
pared their relative efficiency in resolving weak population structure in 
nonmodel species. In this context, the goal of this study was to assess 
the consistency of two cost‐effective sequencing approaches, Pool‐
seq and Rapture, in documenting genetic population structure as well 
as estimating allele frequency and derived statistics in a high gene flow 
and nonmodel species, the American lobster (Homarus americanus), 
comparatively to a conventional GBS approach.

2  | MATERIAL S AND METHODS

2.1 | Sampling material and DNA extraction

A total of 288 egg‐bearing lobster females were collected be‐
tween May and August 2012, from six locations (N = 48 indi‐
viduals per location) across the Northeast Atlantic (Figure 1; see 
Benestan et al., 2015 for details). Half of the second walking leg 
of each individual was collected and preserved in 95% EtOH until 

DNA extraction. A previous study on the American lobster using 
RAD‐seq revealed the existence of both genetic structure and 
significant isolation by distance (IBD) (Benestan et al., 2015). The 
authors identified two main distinct units as (a) southern region 
(i.e., from USA Maine to midsouth of Nova Scotia shelf) and as 
(b) northern region (i.e., from midnorth of Nova Scotia shelf to 
the north of Newfoundland, including all the Gulf of St. Lawrence 
samples). Given this, we selected six sampling sites spread over 
each of these two pre‐identified regions (i.e., three northern 
sites, Gaspé (GAS), Sidney Bight (SID), and Triton (TRI), and three 
southern sites, Lobster bay (LOB), Saint‐John Harbour (SJH), and 
The Wolves/Deer island (THE); Figure 1). Genomic DNA was ex‐
tracted using salt extraction (Aljanabi & Martinez, 1997) with an 
additional RNAse treatment following the manufacturer protocol. 
Genomic DNA quality was checked on 1% agarose gel, and speci‐
mens with too many smears (i.e., indicating degradation of DNA) 
were excluded from the entire dataset. Genomic DNA was then 
quantified using a NanoDrop instrument, roughly diluted, and final 
DNA concentrations were normalized to 20 ng/µl based on fluo‐
rescence reads values (AccuClear™ Ultra High Sensitivity dsDNA 
Quantitation Solution).

F I G U R E  1   Map of lobster sampling locations. GAS, Gaspé; LOB, Lobster bay; SID, Sidney Bight; SJH, Saint‐John Harbour; THE, The 
Wolves/Deer island; TRI, Triton
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2.2 | Library preparation

Individual GBS library was prepared following Mascher, Wu, and 
Amand (2013) and detailed in Moore et al. (2017). Briefly, genomic 
DNA was double‐digested using the PstI and MspI restriction en‐
zymes followed by ligation to a unique barcoded adapter for each 
individual. For GBS‐based libraries, each individual was labeled 
with a unique barcode and 96 individuals were pooled for size se‐
lection, PCR, and sequencing (see sequencing details below).

For Pool‐seq library preparation, we used 2 µl DNA of equi‐
molar concentrations for each individual of a given location. The 
48 individuals of a given sampling site were pooled and barcoded 
using the same nucleotide sequence to identify sample origin. 
Here, the sample size of pooled DNA samples is a critical param‐
eter, which will ultimately influence the accuracy of allele fre‐
quency estimates (Anderson, Skaug, & Barshis, 2014; Fracassetti, 
Griffin, & Willi, 2015; Futschik & Schlötterer, 2010; Gautier et 
al., 2013; Lynch et al., 2014; Rode et al., 2017; Schlötterer et al., 
2014). Therefore, maximizing the number of samples contributing 
to the pool (Schlötterer et al., 2014) can minimize variance at the 
individual level potentially caused by technical errors (e.g., pipet‐
ting, DNA concentration estimations) or quality of samples (e.g., 
tissues or DNA quality). Moreover, several authors advocates that 
replication of pools may help to reduce the error rate in SNP call‐
ing (Gautier et al., 2013; Schlötterer et al., 2014). Here, our pool 
size (i.e., 48 samples) was selected according to Schlötterer et al. 
(2014) who suggested a sampling size ranging from 40 to 100 in‐
dividuals analyzed. Then, we prepared three to four 48 samples 
pool replicates for each sampling site (depending on the availabil‐
ity of DNA) in order to control for experimental reproducibility 
and potential biases derived from Pool‐seq. Additionally, Pool‐seq 
technical replicates were used to compute average allele frequen‐
cies and pairwise FST values per sampling site in order to compare 
with statistical estimators derived from individual‐based datasets. 
Pool‐seq libraries were digested using the same restriction en‐
zymes and protocol described above for GBS‐based libraries. We 
sequenced 16 pool libraries in a first sequencing Ion Proton chip 
containing four sampling sites (i.e., 4xGAS, 4xLOB, 4xSID, 4xTRI) 
and then six pool libraries in a second chip composed of the two 
remaining sampling sites (i.e., 3xSJH and 3xTHE).

Rapture sequencing was performed following Ali et al. (2016). 
First, custom probes were designed from a de novo reference catalog 
of 9,818 loci genotyped during the previous GBS library sequencing 
run (see details below). The probe library was purchased from Arbor 
Biosciences™, and we followed the Mybait protocol supplied with the 
capture kit. In order to explore the potential offered by this method 
that aims at reducing the sequencing costs relative to a conventional 
RAD‐seq approach, we increased the multiplexing load from 96 indi‐
vidual barcodes for our GBS library setup to 384 individual barcodes 
on our Rapture experiment. For these Rapture libraries, a total of 
288 individuals from the six sampling sites used in this study were 
coupled with 93 others samples (required for another project) and 
three free‐DNA water blanks (used for sequencing/bioinformatic 

plate control) to sequence one Rapture library with similar sequenc‐
ing efforts compared to the GBS and Pool‐seq libraries.

2.3 | Library sequencing

All libraries were sequenced on the Ion Torrent p1v3 chip at the 
plateforme d'analyses génomiques of the Institute of Integrative 
and Systems Biology (IBIS, Université Laval, Québec, Canada) with 
a median target of 80 million single‐end reads (50–220 pb) per chip. 
Two rounds of sequencing (i.e., two separate chips) were conducted 
for all libraries. GBS libraries were normalized after the first round 
in order to reduce the unbalanced sequence representation of indi‐
viduals by adjusting DNA volumes for each sample. Pool‐seq librar‐
ies normalization was not possible because individual information 
was unavailable, and therefore, balanced contribution of each in‐
dividual in each pool is assumed. Rapture protocol was also con‐
ducted without normalization as the adjustment of DNA volumes 
on a highly randomized and multiplexed Rapture setup (i.e., several 
hundreds to one thousand barcodes) is very time‐consuming and 
could substantially increase the risk of inadvertent pipetting errors.

2.4 | Data processing

2.4.1 | Construction of a de novo reference 
catalog of individual genotyping‐by‐ 
sequencing (GBS) libraries

Genotyping‐by‐sequencing sequence data from four locations 
(Gaspé, Lobster Bay, Sidney Bight, Triton) were analyzed using the 
pipeline available at (https ://github.com/enorm andea u/stacks_work‐
flow) according to Benestan et al. (2016). First, reads were trimmed 
to 80bp and shorter reads were discarded using cutadapt (Martin, 
2011). Samples were then demultiplexed using process_radtags in 
STACKS V.1.38 (Catchen, Hohenlohe, & Bassham, 2013). A maximum 
of three nucleotide mismatches (M = 3), a minimum stack depth of 
three (m = 3), and a maximum distance for secondary reads N = 5 
were allowed in ustacks. Then, reads were aligned de novo to create a 
catalog of putative loci (cstacks module in stacks, with default param‐
eters) and the populations command was run requiring a locus to be 
present in at least one sampling location and in 50% of all individuals. 
Finally, this dataset was postfiltered using a custom python script 
(available at https ://github.com/enorm andea u/stacks_workf low/00‐
scrip ts/05_filter_vcf.py) where we kept SNPs for which a genotype 
was called in at least 70% of individuals in each sampling site with a 
Ho < 0.6 and a FIS between [−0.7: 0.7]. A minor allele frequency (MAF) 
threshold of at least 1% globally or 5% in each sampling locality was 
also applied and no more than eight SNPs per locus were allowed. 
Based on this final individual GBS dataset, we then generated a tar‐
geted sequences catalog for Rapture. Ultimately, we removed highly 
similar sequences through a “self‐blast” test and RepeatMasker 4.0 
(Smit, AFA, Hubley, R & Green, P. RepeatMasker Open‐4.0.2013‐2015 
http://www.repea tmask er.org), respectively. The final panel was 
composed of 16,780 SNPs spread over 9,818 loci.

https://github.com/enormandeau/stacks_workflow
https://github.com/enormandeau/stacks_workflow
https://github.com/enormandeau/stacks_workflow/00-scripts/05_filter_vcf.py
https://github.com/enormandeau/stacks_workflow/00-scripts/05_filter_vcf.py
http://www.repeatmasker.org
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2.4.2 | Individual variant calling (GBS and Rapture)

Both GBS and Rapture raw data were processed using the same 
workflow as indicated previously for trimming and demultiplexing. 
Individual reads were aligned to the reference catalog with BWA‐mem 
(Li & Durbin, 2009) using default settings values except for minimum 
seed length (−k 19), maximum seed occurrence (−c 500), gap open 
penalty (−O 0), gap extension penalty (−E 2), and the output align‐
ment score option disabled (−T 0). The resulting SAM files were then 
filtered to remove unmapped reads and perform secondary align‐
ment as well as supplementary alignment using SAMtools view (Li et 
al., 2009). Then, reads with mapping quality less than 20 and reads 
containing soft clipping (i.e., the exclusion of terminal bases with mis‐
matches) were removed. SNPs were identified using pstacks module 
specifying a 5× minimum depth coverage for each stack. This thresh‐
old was selected based on the reads distribution of each sample and 
in order to limit false‐positive SNPs resulting from sequencing errors. 
Then, a catalog was built using cstacks with three mismatches allowed 
between samples tags. We ran populations module requiring again a 
locus to be present in at least one population and at a frequency >50% 
in that population, with a minimal depth of five to be processed. The 
final dataset was obtained by keeping SNPs genotyped in at least 70% 
of the individuals in each sampling site, showing an observed hete‐
rozygosity < 0.6 within samples and a global MAF > 0.01. Since our de 
novo reference catalog was already filtered for FIS to remove ambigu‐
ous SNPs, we did not apply this filter again on the mapped datasets. 
Genotype missing data threshold was set to 16% in order to retain 
more than 90% of individuals in both GBS and Rapture datasets.

2.4.3 | Pool‐seq variant calling

Pool‐seq sequences were trimmed, demultiplexed, and aligned across 
the reference catalog as previously described. Sequences Alignment/
Map files in binary format (BAM) were then filtered as above, remov‐
ing all reads with soft clipping (Kofler, Orozco‐terWengel, et al., 2011a). 
Then, BAM files were combined to generate a synchronized multi‐
ple pileup file using SAMtools mpileup tool (Li et al., 2009) and the 
Popoolation2 java script mpileup2sync.jar (Kofler, Pandey, & Schlötterer, 
2011b) with default parameters. SNP calling was performed using the 
popsync2pooldata function in the R package poolftsat 0.0.1 (Hivert, 
Leblois, Petit, Gautier, & Vitalis, 2018). We considered only biallelic SNPs 
called with a minimal read count ≥ 4. We also required a minimal cover‐
age of 30 and maximal coverage of 300 in order to remove poor‐quality 
SNPs and potential sequencing artifacts (i.e., PCR duplicates), respec‐
tively. Finally, we fixed a MAF threshold of at least 0.01 in each pool.

2.5 | Assessing consistency between methods

2.5.1 | Testing for correlations among allele 
frequencies

We first identified shared SNPs between GBS, Rapture, and Pool‐
seq datasets based on locus name information, locus read position, 

and SNP alleles. Allele frequencies for individual‐based data were 
computed for each sampling site using vcftools v0.1.12b (Danecek 
et al., 2011), for both GBS and Rapture VCF datasets. Pool‐seq allele 
frequency estimates were performed by dividing the read count of 
each SNP allele on the total locus coverage. Correlations of minor al‐
lele frequencies were calculated between each of the three methods 
for each shared SNP. We also computed the average MAF across all 
Pool‐seq replicates for each SNP to further reduce the potential bias 
of MAF estimations and to accurately examine the relationship be‐
tween Pool‐seq, GBS, and Rapture methods using the Pearson cor‐
relation coefficient available in R under the cor.test function.

2.5.2 | Computing genetic differentiation for the 
three methods

First, the extent of genetic differentiation was computed and com‐
pared relatively to each method and to the entire dataset (i.e., using 
SNPs shared between all methods and the overall set of discovered 
SNPs in each method). We computed pairwise FST values between 
each sampling site using the θ estimator of Weir and Cockerham 
(1984). In order to minimize the effects of linkage disequilibrium, 
downstream analyses were performed using only one SNP per locus, 
by keeping only SNP showing the higher MAF at each locus. This last 
filtering step is expected to reduce the number of low‐frequency 
SNPs. Indeed, these rare variants are typically hard to distinguish 
from sequencing errors and mapping artifacts in low coverage NGS 
data without reference genome. Moreover, Guo et al. (2013) also 
demonstrated by simulations that Pool‐seq is not ideal for estimating 
allele frequencies of rare SNPs.

For GBS and Rapture, FST were computed using the stamppFst 
function from the R package StAMPP 1.5.1 (Pembleton, Cogan, & 
Forster, 2013) with 95% CI estimated on 1,000 bootstraps. Pool‐seq 
FST values were computed with the computeFST function available in 
the R package poolfstat 0.0.1, using the method of moments devel‐
oped by Hivert et al. (2018). Briefly, this latter method is based on 
an analysis of variance derived from the Weir and Cockerham (1984) 
estimator and corrected for Pool‐seq datasets. CI for Pool‐seq FST 
was obtained using a custom bash script over 1,000 bootstraps it‐
erations. Pool technical replicates were used to compute the aver‐
age of each pairwise FST and CI values. Additionally, for all pairwise 
site comparisons, we performed standard Mantel tests to assess 
correlation between genetic distances (measured as FST/(1 − FST); 
Rousset, 1997) and geographic distances. Seafloor distances were 
measured between each sites using the R package marmap 0.9.6 
(Pante & Simon‐Bouhet, 2013). This R toolbox enabled us to esti‐
mate marine distances along coast lines. Mantel test was performed 
with Ade4 1.7.10 (Dray & Dufour, 2007) using 1,000 permutations 
assuming a two‐dimensional habitat in which geographic distance 
was log‐transformed.

An additional analysis of allele frequency differentiation was 
conducted with BayPass v2.1 (Gautier, 2015). First, we ran BayPass 
to estimate the scaled variance–covariance matrix (Ω) under the 
neutral core model implemented in the software. For both GBS and 
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Rapture datasets, 100 short pilot runs with 1,000 iterations each 
were set with a 5,000 burn‐in period. We then ran BayPass with 
the same settings defined for individual‐based data but accounting 
for the specificities of Pool‐seq data using the “Pool‐seq” options 
implemented in BayPass. As for FST analysis, only the SNP with the 
highest MAF at each locus for each dataset was kept. To investigate 
population structure, we carried out a singular value decomposition 
on each Ω matrix. We used the resulting principal components coor‐
dinates to produce a two‐dimensional visualization of the observed 
genetic variation. We compared the geographic position (i.e., lati‐
tude and longitude) of sampling sites with their PC‐based genetic 
positions. The correlation between Ω matrices was then assessed 
using a Mantel test. The Pool‐seq variance–covariance matrix was 
reduced by averaging over pool site replicates in order to perform 
this latter analysis with similar matrix sizes as the individual matrix 
(i.e., individual‐based Ω matrices of size 6 × 6).

3  | RESULTS

3.1 | Sequencing data statistics

The average number of reads per sample among sequenced libraries 
was 1.3 million (SD = 0.41), 0.46 million (SD = 0.25), and 8.4 million 
(SD = 1.7) for GBS, Rapture, and Pool‐seq, respectively.

The Ion Proton protocol used at the IBIS sequencing platform pro‐
vides 80 million reads per sequencing for one chip on average. From 
our Rapture experiment (i.e., multiplexing with 384 sample libraries 
per Ion Proton chip with two sequencing runs), we expected to re‐
trieve roughly 0.4 million reads per sample (i.e., 2 chips × 80 million 
reads divided by 384 samples libraries). Conversely, we multiplexed 
only 96 samples per chip for GBS sequencing, yielding an expected 
number of 1.6 million reads per sample. Here, it is noteworthy that 
GBS sequencing represented the entire genome sequence diversity 
obtained from restriction enzyme libraries, whereas Rapture librar‐
ies represent only a reduced fraction of the GBS libraries (i.e., 9,818 

captured sequences). Hence, the useful genomic load (i.e., proportion 
of expected reads that are both present in the reference and in the 
raw data) between the two protocols would not be the same. From 
our catalog of reference containing 9,818 loci, the average proportion 
of targeted loci recovered (with at least one read) was comparable 
yet slightly lower for Rapture mapped data (95%) compared to GBS 
and Pool‐seq (98% and 99%, respectively). After filtration, the num‐
ber of SNPs discovered by GBS and Rapture was 16,986 and 13,931, 
respectively, while SNPs calling from Pool‐seq discovered a total of 
10,874 filtered SNPs (Table 1). Missing threshold removed nine and 
27 individuals from GBS and Rapture dataset, respectively. Several 
samples showing a suspected DNA contamination were also removed 
from the GBS and Rapture datasets. Final datasets included a total of 
265 and 252 individuals for GBS and Rapture, respectively. Complete 
details of sequencing outputs and data processing results are summa‐
rized in Table 1. Finally, selecting only one SNP per locus gave 8,079; 
6,401 and 5,558 SNPs for GBS, Rapture, and Pool‐seq datasets. For 
downstream analyses, the complete SNPs dataset genotyped in each 
method is called the “overall SNP dataset”. Sequencing information 
and bioinformatics results about de novo individual‐base catalog 
from GBS sequencing are also provided in Table S1.

3.2 | Consistency of estimated allele frequencies

In total, 4,664 SNPs were shared among the three methods which 
is referred to “overlapped dataset” hereafter (see Figure S1). Minor 
allele frequencies were highly correlated among the three meth‐
ods tested (mean r = 0.934, SE = 0.035). Pearson correlation be‐
tween GBS and Rapture allele frequency for a given population 
was 0.95 on average (Figure 2), while correlation between GBS 
and Pool‐seq was 0.92 on average and variable among populations 
(Figure 3, see also Table 2 for each pool replicate). It was clear from 
the data that the average correlation value for Pool‐seq was driven 
downward by a lower correlation value observed in one of the 
three THE replicates (i.e., THE(1), Pearson r = 0.64). However, no 

 GBS Rapture Pool‐seq

Number of individual barcodes per 
sequencing chip

N = 96 N = 384 N = 16 or 6

Average reads per library (millions) 80 (SD = 3.3) 84 (SD = 4.2) 78 (SD = 12.3)

Average reads per individual/pool 
(millions)

1.3 M 
(SD = 0.41)

0.46 M 
(SD = 0.25)

8.4 M 
(SD = 1.7)

Proportion of targeted loci with at 
least one read per sample/pool

98% 95% 99%

SNPs called 41,147 35,325 49,238

SNPs quality filtering 16,986 13,930 10,874

SNPs (only one SNP per locus) 8,079 6,401 5,558

SNPs mean depth 17× 33× 87×

% targeted loci after filtering 82% 65% 56%

Note: The last line (% targeted loci after filtering) indicates the proportion of loci kept at the end of 
the filtering steps and relative to the maximum of loci expected (i.e., the 9,818 loci from the refer‐
ence catalog used for mapping and for sequence capture).

TA B L E  1   Summary statistics of data 
obtained using genotype by sequencing 
(GBS), Rapture, and Pool‐seq approaches



6612  |     DORANT eT Al.

difference in coverage was observed for THE(1) compared to other 
pool replicates THE(2) and THE(3) (see Figure S3). Thus, we sus‐
pected that individual DNA contributions in THE(1) were strongly 
unbalanced, probably due to experimental errors when samples 
DNA were pooled together. Therefore, the pool replicate THE(1) 
was removed from all Pool‐seq datasets in order to mitigate its 
effect in downstream analyses (both for overall and overlapped 
SNPs datasets).

3.3 | Measuring genetic differentiation

Overall, the genetic differentiation measured by the three meth‐
ods was weak with an average pairwise FST of 0.0028 (SD = 0.0027, 
Table 3). While nearly identical levels of genetic differentiation were 

observed among individual‐based data (e.g., average FST was 0.0012 
and 0.0011 for GBS and Rapture, respectively), values obtained 
from Pool‐seq data were three to five times higher (average FST was 
0.0060 for Pool‐seq). Analyzing the coefficient of variation (SD/mean) 
through pairwise FST bootstraps showed a lower variation for Pool‐
seq estimates (average CV was 15% for overall and 11% for over‐
lapped dataset) in comparison with individual‐based methods where a 
higher level of variation was observed (average CV was 37% for over‐
all and 88% for overlapped for GBS and was 12% for overall and 51% 
for overlapped for Rapture). The Mantel tests of IBD were significant 
for all datasets (see Table S2). However, GBS and Rapture displayed 
stronger correlation (observed Mantel test r‐value = 0.70 for the over‐
all and 0.62 for the overlapped for GBS datasets; p‐value < 0.05; r‐
value = 0.82 for the overall and 0.66 for the overlapped for Rapture 

F I G U R E  2   Minor allele frequency 
correlation comparing GBS and Rapture. 
Comparison between minor allele 
frequency (MAF) estimates of the 4,664 
overlapped SNPs from individual GBS 
(x‐axis) and Rapture (y‐axis), with the 
Pearson correlation values for each 
population comparison. The black line 
represents the expected correlation (1:1 
proportion)
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datasets; p‐value < 0.05) than Pool‐seq (Mantel test r‐value = 0.45; 
p‐value = 0.0010 for both overall and overlapped Pool‐seq datasets).

The analysis of the variance–covariance matrices (hereafter Ω 
matrix) depicted similar pattern of clustering between the three se‐
quencing methods tested. Figure 4 illustrates the resulting principal 
components coordinates derived from a singular value decomposi‐
tion of each Ω matrix, calculated for overall and overlapped SNPs 
datasets. The first axis of variation (PC1) accounted for nearly half 
of the total genetic variation, ranging from 49.30% to 58.48%, for all 
three methods. The second axis of variation (PC2) explained 22.54%, 
19.76%, and 17.94% for GBS, Rapture, and Pool‐seq methods, re‐
spectively, for the overall SNP dataset, while for the overlapped SNP 
dataset, PC2 explained only 14.09%, 14.17%, and 16.50% of the vari‐
ance for GBS, Rapture, and Pool‐seq, respectively. The GBS datasets 

revealed two clusters corresponding to the North and South genetic 
groups defined by Benestan et al. (2015), although the LOB sam‐
pling site was somewhat at an intermediate position along PC1 and 
PC2 axes (Figure 4a). Rapture and Pool‐seq visual representation 
of Ω matrices (hereafter Ω‐PC) showed a clear clustering pattern 
only for the second principal component (Figure 4b,c). Yet, Rapture 
and Pool‐seq Ω‐PC also depicted the same expected North/South 
clustering but showed that LOB sample was more closely related 
to the South group relatively to PC1 and PC2 axes. The correlation 
between the genetic positions obtained for PC1 and PC2 (Ω‐PC1 
and Ω‐PC2), and spatial distribution of sample sites (i.e., latitude and 
longitude) revealed a significant spatial structure (Table 4). Strong 
positive correlations were measured for all methods and datasets 
except for Pool‐seq overall dataset where the correlation on the PC1 

F I G U R E  3   Minor allele frequency 
correlations comparing GBS and Pool‐
seq. Comparison between minor allele 
frequency (MAF) estimates for the 4,664 
overlapping SNPs from individual GBS 
sequences data (x‐axis) and Pool‐seq 
data (y‐axis), with the Pearson correlation 
values for each comparison. For each 
sampling site comparison, Pool‐seq 
values represent the average of minor 
allele frequency between pool replicates. 
The black line represents the expected 
correlation (1:1 proportion) 0.0
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was negative (r = −0.08 for PC1 vs. latitude, and r = −0.15 for PC1 
vs. longitude). On average among all datasets, correlation level be‐
tween Ω‐PC space and the spatial distribution of samples sites was 
stronger for PC2 (average r = 0.50 for Ω‐PC1 vs. spatial distribution, 
and average r = 0.80 for Ω‐PC2 vs. spatial distribution).

Mantel tests detected positive and significant correlation among 
all Ω matrices (average r = 0.76; Table S3), but stronger correlation 
coefficients were obtained between Ω matrices from the two indi‐
vidual‐based methods (mean r = 0.87), while correlations between ei‐
ther GBS or Rapture Ω matrices and Pool‐seq Ω matrices were lower 
(mean r = 0.67). Correlations between overall versus overlapped 
datasets among each method tested were still high and significant 
(r = 0.91 for GBS, r = 0.97 for Rapture, and r = 0.84 for Pool‐seq). 
This indicates that subsampling overlapped SNPs from overall SNPs 
dataset generally conserved the genetic relationships among each 
pair of populations.

4  | DISCUSSION

Cost‐effective NGS alternatives (i.e., Pool‐seq and Rapture) to conven‐
tional individual GBS libraries are becoming increasingly popular and 
may represent a well‐suited approach for the analysis of genetic varia‐
tion in wide natural populations. These alternative approaches appear 
to represent interesting SNP genotyping strategies in the case of spe‐
cies exhibiting weak genetic differentiation, where large sampling de‐
sign (e.g., extended species range, high number of sampling locations, 
large sample size, large number of markers) will result in further benefits 
to accurately investigate genetic structure and connectivity (Gagnaire 
et al., 2015; Lotterhos & Whitlock, 2015; Patterson et al., 2006).

Here, we empirically explored the consistency of the genetic 
structure observed in a high gene flow species by comparing con‐
ventional GBS with Rapture and Pool‐seq approaches. We found 

that individual‐based methods (i.e., GBS and Rapture) provided 
more congruent results than Pool‐seq. In the following sections, we 
discussed the consistency of these three methods in a context of a 
weak genetic differentiation and we also highlight the cost and ben‐
efits for each method tested.

4.1 | Level of congruence between GBS and 
alternatives methods

Our results showed that allele frequencies estimated from GBS and 
the two alternatives methods, Rapture and Pool‐seq, were consist‐
ent although allele frequency estimates from Rapture were more 
highly correlated to GBS than Pool‐seq. These observations are in 
agreement with other studies that also reported a strong correla‐
tion between pooled and individually measured allele frequencies 
(Bélanger, Esteves, Clermont, Jean, & Belzile, 2016; Fracassetti et al., 
2015; Gautier et al., 2013; Rellstab, Zoller, Tedder, Gugerli & Fischer, 
2013). Levels of genetic differentiation among the three sequencing 
approaches were weak (e.g., all pairwise FST were well under 0.01, 
Table 3), as often the case for marine species (Gagnaire et al., 2015; 
Hedgecock, Barber, & Edmands, 2007; Palumbi, 2003). Average FST 
observed for GBS and Rapture were almost identical and very similar 
to the level of genetic differentiation previously reported on this spe‐
cies for a larger set of samples with an averaged FST value of 0.0018 
across 10,156 SNPs (Benestan et al., 2015).

In contrast, FST estimation from Pool‐seq data was five times higher 
than those measured with individual‐based methods. However, Pool‐
seq FST measures generated lower coefficient of variation through 
bootstrapping across loci than GBS and Rapture. Lower coefficient of 
variation for Pool‐seq is likely due to the fact that both allele frequen‐
cies and pairwise FST values from Pool‐seq data were actually based 
on the average estimated for several Pool‐seq replicates, which may 
have contributed to reduce variance between replicates. This was 

 GAS LOB SID SJH THE TRI

GBS versus

Pool replicate 1 0.86 0.85 0.87 0.92 0.64 0.85

Pool replicate 2 0.86 0.88 0.86 0.88 0.84 0.88

Pool replicate 3 0.86 0.85 0.86 0.91 0.86 0.86

Pool replicate 4 0.85 0.80 0.84 – – 0.87

Average 0.86 0.85 0.86 0.90 0.78 0.87

Rapture versus

Pool replicate 1 0.84 0.84 0.87 0.89 0.61 0.84

Pool replicate 2 0.85 0.87 0.85 0.86 0.82 0.87

Pool replicate 3 0.85 0.84 0.85 0.88 0.84 0.84

Pool replicate 4 0.85 0.78 0.83 – – 0.86

Average 0.85 0.83 0.85 0.88 0.76 0.85

Note: Values represent MAF correlations between individual‐based data and each Pool‐seq repli‐
cate distributed for each sampling site (columns). Sampling site codes are detailed in the Figure 1 
(i.e., sampling map). All correlation values were significant (p‐value < 10−4) and calculated from the 
Pearson method. Note the weaker correlation for Pool replicate 1 for the THE population.

TA B L E  2   Details of minor allele 
frequency (MAF) correlations between 
individual‐based approaches (i.e., GBS and 
Rapture) and Pool‐seq overlapped SNPs 
datasets
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recommended by previous studies in order to mitigate bias in esti‐
mations of allele frequencies potentially caused by the unbalanced 
contribution of each individual in a pool. Indeed, balancing the DNA 
contribution of each sample in a pool is notoriously challenging (i.e., 
equimolarity, Futschik & Schlötterer, 2010; Gautier et al., 2013). Yet, 
the pool sample size is a critical parameter for characterizing genetic 
structure from Pool‐seq data, particularly for FST estimation since 
numerous computational approaches, such as maximum likelihood 
estimates (Leblois et al., 2018; Smadja et al., 2012) or model‐based 
methods (Fariello et al., 2017), are conditioned by sample size. In 
practice, unequal contributions of each individual to the final pool 
of sequences may introduce biases in allele frequencies estimates 
(Gautier et al., 2013; Zhu, Bergland, González, & Petrov, 2012). The 
concept of effective pool size (i.e., number of diploid individuals with 

equimolar amounts of DNA in an idealized pool that was expected 
to show the same level of variance in allele frequency estimations) 
has been proposed by Gautier et al. (2013) to illustrate this latter 
source of errors. Using an empirical dataset, they showed that the 
effective pool size could be up to 30% lower than the experimental 
pool size. Here, using the program poolne_estim developed by Gautier 
et al. (2013), we estimated that the effective pool size ranged from 
17 to 48 among all pool replicates (see details in Table S4). This latter 
results represented an experimental error (as defined by Gautier et 
al. (2013)) ranging from 0% to 133.6% (average = 55.1%, SD = 29.2). 
Thus, like Gautier et al. (2013), we observed that the effective pool 
size differed from our experimental pool design. Nevertheless, al‐
lele frequency estimates remained similar between individual‐based 
methods and Pool‐seq, except for one pool. Unfortunately, Gautier et 

F I G U R E  4   Clustering analysis under Bayesian hierarchical model. (a, b, and c) represent the eigenvalue decomposition of the scaled 
variance–covariance matrices of population allele frequencies (Ω) for GBS, Rapture, and Pool‐seq datasets, respectively. Left plots 
correspond to overall SNPs datasets and right plots correspond to overlapping SNPs datasets. Variance–covariance matrix (Ω) was estimated 
from the neutral core model proposed by Coop, Witonsky, Rienzo, & Pritchard (2010) and implemented in BAYPASS software (Gautier, 2015).

(a)

(b)

(c)
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al. (2013) did not explore the impacts of effective pool size on sum‐
mary statistics such as FST estimates.

Here, we used the FST estimator of Hivert et al. (2018) which ap‐
parently outperform earlier proposed estimators (i.e., Popoolation2—
Kofler, Pandey, et al., 2011b). Using simulated data, the authors 
compared the accuracy and robustness of their FST estimator under 
several sources of bias that commonly affect sequencing datasets. 
They demonstrated that their estimator was robust regarding the vari‐
ance of coverage across loci and observed that sequencing error impli‐
cated a negligible bias for Pool‐seq FST estimates. However, they found 
that experimental errors have a substantial effect on FST estimates and 
represented the most important source of bias in FST estimates be‐
tween Pool‐seq versus individual‐based genotyping methods. They 
also noted that the smaller is the pool size, the higher is the effect of 
experimental bias. For example, they showed that, with an experimen‐
tal error of 50% and a pool size of n = 10, FST estimates were biased 
by a factor of 1.5. This bias was clearly flattened when the pool size 
was increased to n = 100. In our case, we pooled 48 individuals to 
create each pool replicate. According to the observations reported by 
Hivert et al. (2018) and our experimental error estimates, we expect 
the experimental error (i.e., the effective pool size vs. experimental 
pool size) to be the main source of bias explaining the difference in FST 
estimates between individual‐based data and Pool‐seq data. Beyond 
this bias, slight differences in the FST equation used for individual data 
and pool‐seq data may also contribute to the empirically observed FST 
differences. However, Hivert et al. (2018) found that this bias is ex‐
tremely low (bias < 0.5%). Indeed, their FST calculation model assumes 
that the read counts are multinomially distributed and suppose that 
each SNPs have equal sequencing coverage among samples in a pool.

Finally, we were not able to quantify the accuracy of each 
method in estimating allele frequencies (and derived summary sta‐
tistics) since we used a purely empirical data in which the truth is 
unknown. A thorough a simulation study would be relevant to com‐
pare the three protocols and complement our outcomes. While 
simulation studies of Pool‐seq and GBS data have already been per‐
formed to report sources of bias (e.g., Arnold, Corbett‐Detig, Hartl, 
& Bomblies, 2013; Cariou, Duret, & Charlat, 2016; Gautier et al., 
2013; Guo et al., 2013; Hivert et al., 2018), no study pertaining to the 

limits of the Rapture method has been performed yet. Further sim‐
ulations considering the Pool‐seq, Rapture, and GBS methodologies 
would allow testing the effect of different levels of pooling, different 
number of individuals and different number of SNPs on the accu‐
racy of FST estimates for these three libraries protocols. This would 
enable providing detailed guidelines for designing future empirical 
studies. However, such work was beyond the goal of the present 
study that only took an empirical approach to measure consistency 
among methods. Moreover, as stipulated by Shafer et al. (2017), it is 
difficult to reproduce the important variation introduced during wet 
laboratory data generation using simulated data. Indeed, building 
proper algorithms simulating complex laboratory biases such as PCR 
duplicates remains difficult as well as similar statistic estimators for 
all sequencing methods. Hence, we think that our empirical data can 
still be a relevant approach to substantiate interpretations and test 
the consistency of the alternatives methods to GBS.

NGS approaches have some conceptual and methodologi‐
cal limitations that can introduce artifacts and affect estimates of 
population genetic parameters (Andrews et al., 2016; Cariou et al., 
2016; Davey et al., 2011). For example, mutations in restriction 
sites, referred to allele dropout (“ADO”), may result in an underesti‐
mation of genetic diversity and false inference of population diver‐
gence (Arnold et al., 2013; Cariou et al., 2016; Gautier et al., 2013). 
Moreover, restricted digested libraries can suffer from a high level 
of sequence clonality related to PCR amplification (i.e., PCR dupli‐
cates), which have the potential to bias allelic read depth and pro‐
duce genotyping errors (Davey et al., 2011). These methodological 
limitations are known to generate missing data that can substantially 
cause mis‐estimations of commonly used statistics (e.g., FST, Tajima's 
D, nucleotide diversity) as well as bias in population genomic infer‐
ences (Arnold et al., 2013). In this study, we used Ion Proton™ sys‐
tems, which were designed to produce single‐end sequencing reads. 
However, unlike paired‐end sequences data, distinguishing PCR du‐
plicates in single‐end sequences remains difficult. To date, only one 
recent study provided estimate of the average PCR duplication rate 
of single‐end high‐throughput sequences datasets (Bansal, 2017). 
Moreover, the identification of PCR duplicates is difficult in single‐
end Pool‐seq since haplotype information is lost. Still, we mitigated 
potential experimental bias due to PCR duplication by maximizing 
genomic diversity in each DNA library (i.e., number of genomes), 
using 200 ng of genomic DNA per sample as recommended by sev‐
eral studies (Andrews et al., 2016; Casbon, Osborne, Brenner, & 
Lichtenstein, 2011; Davey et al., 2011). Considering that the genome 
size of the American lobster was estimated roughly 4.5Gb (Jimenez, 
Kinsey, Dillaman, & Kapraun, 2010), we expected that each DNA li‐
brary was represented by nearly 40,000 American lobster genomes 
following the equation:

where Qng is the amount of DNA in nanograms and Gbp is the 
length of DNA amplicon in base pairs (i.e., genome size). This cal‐
culation is based on the assumption that the average weight of 

Numberof copies=
Qng ⋅6.022 ⋅10

23
molecules∕mole

Gbp ⋅650g∕mole ⋅10
9
ng∕g

TA B L E  4   Two‐dimensional association of genetic variation 
versus geography

 

Latitude Longitude

PC1 PC2 PC1 PC2

GBS overall 0.71 0.74 0.69 0.70

GBS overlap 0.69 0.72 0.68 0.78

Rapture overall 0.55 0.94 0.48 0.63

Rapture overlap 0.68 0.94 0.720 0.82

Pool‐seq overall −0.08 0.87 −0.15 0.76

Pool‐seq overlap 0.60 0.92 0.460 0.79

Note: Values represent Pearson r correlation between Ω‐PC space co‐
ordinates of each sampling site (i.e., PC1 and PC2, see Figure 4) versus 
geographic position (i.e., latitude and longitude).
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base pair (bp) is 650 Daltons. We also used a sequence size se‐
lection (BluePippin™ prep‐Sage Science) to minimize amplicon size 
variability and limit PCR cycling to 10 cycles during library prepa‐
ration, two measures that should prevent efficiently the formation 
of PCR duplicates. Finally, the probability of obtaining PCR du‐
plicates is negatively correlated to the number of targeted mark‐
ers. Therefore, Ali et al. (2016) targeted 500 loci and observed a 
high proportion of PCR duplicates. Here, on the contrary, we tar‐
geted 9,818 loci, resulting in lower probability of generating PCR 
duplicates.

4.2 | Consistency of population structure patterns

Population genetic structure was further investigated using a hi‐
erarchical Bayesian model available in BayPass (Gautier, 2015). All 
the three methods showed a similar signal of clustering, uncover‐
ing the presence of two geospatial groups (Figure 4). This North/
South dichotomy was previously highlighted using 13 microsatellites 
(Kenchington, Harding, Jones, & Prodöhl, 2009) and 10,156 SNPs 
(Benestan et al., 2015), which then give support to our outcomes. 
Nevertheless, caution is required to interpret this clustering signal. 
Indeed, comparing observed genetic variation from Ω matrices with 
spatial distribution of samples sites (i.e., latitude and longitude) re‐
vealed that the latitude criterion was the most prominent pattern 
of clustering. Furthermore, comparing genetic differentiation (i.e., 
pairwise FST) with geographic distances depicted a positive signal of 
IBD, as also identified by Benestan et al. (2015). Importantly, the dis‐
jointed range of sampling sites (i.e., geographic gap between samples 
from the North vs. South) may impact our capability to accurately re‐
solve population structure (Bradburd, Coop, & Ralph, 2018). Indeed, 
most currently available clustering methods are known to be easily 
confounded by the presence of IBD and tend to split continuous pat‐
terns of spatial variations in discrete groups (Frantz, Cellina, & Krier, 
2009; Meirmans, 2012). Adding intermediate sampling points and 
using recently developed methods able to deal with both clusters 
and continuous variation (Bradburd et al., 2018) could help to dis‐
criminate the scale of the clustering pattern as well as the pattern 
of IBD.

4.3 | Cost considerations of alternatives methods

GBS, Pool‐seq, and Rapture approaches did not require the same in‐
vestment of cost and time. For instance, individual‐based approaches 
such as GBS and Rapture require separating each individual sample 
when preparing libraries, whereas Pool‐seq preparation involves a 
single library step for an entire pool of samples (Schlötterer et al., 
2014). NGS library preparation still stands as a key cost factor in 
population genomic studies. So far, Pool‐seq has remained the most 
economical method to reduce sequencing costs over a large sam‐
pling design. However, Rapture may overcome some of the cur‐
rent limitations of Pool‐seq at a reasonable price when using large 
number of samples. The Figure 5 illustrates the estimated cost of 
each method relative to the number of samples analyzed and shows 

that Rapture cost‐effective performance was strongly related to 
the level of multiplexing. Importantly, we estimated that genotyp‐
ing costs were comparable between GBS and Rapture—considering 
Rapture 384 multiplexing setup—when a total of about 1,000 sam‐
ples are used. Below this threshold, GBS approach remains less ex‐
pensive than Rapture. Indeed, conversely to GBS, Rapture requires 
an investment prior to sequencing, in order to select target DNA 
sequences and then the purchase of capture probes. We estimated 
that this investment represented near 50% of the total budget for 
1,000 samples (following our experiment parameters). On the other 
hand, Rapture sequencing costs were 22.7% lower relative to GBS 
(25,390 $US vs. 32,815 $US) based on 2,000 samples, and 40% 
lower with 5,000 samples (50,445 $US vs. 82,524 $US). Note that 
GBS sequencing costs were estimated from our experiment (i.e., 96 
barcodes setup per sequencing chip with Ion Proton technology) 
based on the most common protocol implemented by the sequenc‐
ing platform (IBIS, Canada). Thus, cost saving is achieved by increas‐
ing the number of samples per sequencing effort regardless of the 
sequencing technology (e.g., Ion Proton or Illumina). Furthermore, 
GBS and Pool‐seq differ from Rapture in terms of time required to 
produce the final data. Here, we have roughly estimated that for a 
sample of size 1,000, both GBS and Pool‐seq required approximately 
nine months, whereas Rapture required near that 16 months due to 
the initial development steps (see time‐stepping scheme in Figure 
S2). Consequently, it may be unnecessary and more expensive to use 
Rapture compared to conventional GBS depending on the scientific 
question, the scale of the research project, the sampling design, and 
the laboratory possibilities.

Table 5 provides a summary of prominent advantages and dis‐
advantages of each method that are briefly summarized below. The 
advantage of GBS approach is that it can be applied using a de novo 
assembled catalog (Etter, Preston, & Bassham, 2011), while both 
Rapture and Pool‐seq approach require prior genomic reference in 
order to align sequencing reads (Ali et al., 2016; Schlötterer et al., 
2014). Since no reference genome was available for the American 
lobster (or even for a closely related organism), we used prior GBS 
development to select a set of SNP markers and then build a de 
novo reference catalog, which was used to align raw reads obtained 
from each approach (e.g., GBS, Rapture, and Pool‐seq). While Ali et 
al. (2016) used a reference genome for mapping, we demonstrated 
here that Rapture approach may provide good quality data success‐
fully obtained from a de novo reference catalog based on GBS short 
reads data.

5  | CONCLUSION

In conclusion, we found that Pool‐seq and Rapture provided con‐
sistent allele frequency estimates and nearly identical patterns of 
population structure compared to conventional GBS approach. 
However, despite increasingly accurate FST estimator for Pool‐
seq methods (Hivert et al., 2018), or the availability of individual 
data combined with higher sequencing depth for the Rapture 
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method, we found that estimating very weak genetic differentia‐
tion in empirical data remains difficult no matter the genotyping 
method being used. We flagged up the importance of unequal 

contribution of samples in Pool‐seq that introduce substantial 
bias in FST estimates. Therefore, increasing the size of the pools 
(i.e., over 100 samples per pool) may help to further reduce the 

F I G U R E  5   Genotyping cost relatively 
to sampling design. Genotyping costs 
were estimated from our experimental 
design and sequencing platform fees. 
Genotyping by sequencing (GBS) was based 
on 96 barcodes sequencing setup. Pool‐
seq genotyping costs were calculated 
based on pool size with 50 samples, 
three technical replicates per pool, and 
15 Pool‐seq libraries per sequencing 
chip. Rapture costs are given for three 
multiplexing scenarios (e.g., 96, 192, and 
384 individual barcodes). Genotyping cost 
were estimated based on Probe kit invest 
(here 20K probes kit ≈ 6,000 $US—Arbor 
Biosciences™ 2016), an average reads 
depth to 15×, and an optimized capturing 
step for five Rapture in the same 
laboratory experience. We also allowed 
10% of poor‐quality samples for re‐
sequencing in GBS and Rapture. We fixed 
two sequencing runs for each individual/
pool libraries among each approach
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TA B L E  5   Advantages/disadvantages of each approaches

Method Term definition Advantage Disadvantage

GBS Introduced by Davey et al. (2011) 
Genotyping‐by‐sequencing (GBS) is a set of 
genetic screening techniques using restric‐
tion enzymes to reduce genome complexity 
and enable high‐throughput genotyping of 
multiple DNA samples at large number of 
DNA marker (usually SNPs)

• Keep individual information
• No reference genome required
• Allow low coverage sequencing
• Library normalization

• High genotyping costs with large 
number of samplesa

• Heavy bioinformatics process when 
dealing with thousands of samples

• Limited multiplexing for sequencingb

Rapture Developed by Ali et al. (2016) 
“A sequencing technique, which combine 
the benefits of both RAD‐seq and sequence 
capture adding an in‐solution capture of 
chosen RAD tags to target sequencing reads 
to desired loci. Rapture is a rapid and flexible 
technology capable of analyzing a very large 
number of samples with minimal sequencing 
and library preparation costs.”

• Costs decrease with number of sam‐
ples compared to GBS

• Keep individual information
• No reference genome required
• Allow low coverage sequencing
• Fast bioinformatic processes
• Requires fewer reads per sample than 

GBS for the same coverage

• Require prior RAD‐seq experiment 
to develop capture probes

• Investment for probes production
• Overall time required for getting 

results extended
• Less cost‐effective when number of 

samples is small

Pool‐seq Reviewed by Schlötterer et al. (2014) 
“A sequencing technique in which sequenc‐
ing libraries are not prepared from DNA of 
a single individual or cell but from a mixture 
of DNA fragments originating from different 
individuals or cells.”

• Low costs
• Fast library time preparation
• Large library multiplexing (hundreds 

to thousands of samples)
• Fast bioinformatics processes

• No individual information
• Requires genomic reference
• Require pool of individuals > 40
• Unbalanced contribution of samples
• Minimal coverage > 20×

aGenotyping costs are proportional to the number of samples. 
bFor the same sequencing depth, GBS need more sequencing effort per sample than Rapture. 
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effect of this experimental bias. We further advocate that future 
empirical Pool‐seq projects would be reinforced with several pool 
replicates in order to control for experiment reproducibility and 
data robustness.
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